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Abstract. This paper presents an analysis of the macroscopic heat and mass transport equations for laminar flow in permeable 
structures. Two driving mechanisms are considered to contribute to the overall momentum transport, namely temperature driven 
and concentration driven mass fluxes. Double-diffusive natural convection mechanism is investigated for the fluid phase in laminar 
regime. Equations are presented based on the double-decomposition concept, which considers both time fluctuations and spatial 
deviations about mean values. This work intends to demonstrate that additional transport mechanisms are mathematically derived 
if temperature, concentration and velocity present simultaneously time fluctuations and spatial deviations within the domain of 
analysis. Stability analysis of mixtures composed of lighter or heavier components under gradients of temperature and 
concentration is discussed upon. 
 
Keywords. Natural convection, Double-diffusive, Laminar flow, Double-decomposition. 

 
1. Introduction  
 

The study of double-diffusive natural convection in porous media has many environmental and industrial 
applications, including grain storage and drying, petrochemical processes, oil and gas extraction, contaminant 
dispersion in underground water reservoirs, electrochemical processes, etc (Bennacer et al, 2001, Goyeau et al, 1996, 
Mamou et al, 1995, Mamou et al, 1998) and (Mohamad and Bennacer, 2002). In some specific applications, the fluid 
mixture may become turbulent and difficulties arise in the proper mathematical modeling of the transport processes 
under both temperature and concentration gradients. Modeling of macroscopic transport for incompressible flows in 
rigid porous media has been based on the volume-average methodology for either heat (Hsu and Cheng, 1990) or mass 
transfer (Bear, 1972, Bear and Bachmat, 1967, Whitaker, 1966 and Whitaker, 1967).  

If time fluctuations of the flow properties are considered, in addition to spatial deviations, there are two possible 
methodologies to follow in order to obtain macroscopic equations: a) application of time-average operator followed by 
volume-averaging (Kuwahara et al, 1996, Kuwahara and Nakayama, 1998), or b) use of volume-averaging before time-
averaging is applied, (Lee and Howell, 1987). This work intends to present a set of macroscopic mass transport 
equations derived under the recently established double-decomposition concept (Pedras and de Lemos, 2000, Pedras 
and de Lemos, 2001, Pedras and de Lemos, 2001b, Pedras and de Lemos, 2001c), trough which the connection between 
the two paths a) and b) above is unveiled. That methodology, initially developed for the flow variables, has been 
extended to heat transfer in porous media where both time fluctuations and spatial deviations were considered for 
velocity and temperature (Rocamora and de Lemos, 2000). Buoyant flows (de Lemos and Braga, 2003) and mass 
transfer (de Lemos and Mesquita, 2003) have also been investigated. Recently, a general classification of all proposed 
models for turbulent flow and heat transfer in porous media has been published (de Lemos and Pedras, 2001).  

Motivated by the foregoing, this paper intends to validate the present numerical tool using in this preliminarily only 
the laminar equations. Future improvements intend to analyses the turbulent behavior of the double diffusive 
phenomena since the laminar regime has shown good agreement with those results obtained by other authors in the 
open literature. 
  
2. Local Instataneous Transport Equation 
 

The steady-state microscopic instantaneous transport equations for an incompressible binary fluid mixture with 
constant properties are given by: 

 
0=⋅∇ u                           (1) 

 
guuu ρµρ +∇+−∇=⋅∇ 2)( p           (2) 

 
)()()( TTc p ∇⋅∇=⋅∇ λρ u           (3) 
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lll Rm ρρ  = ) ( Ju +⋅∇    (4) 
 
where u  is the mass-averaged velocity of the mixture, ∑=

l
lluu m , lu  is the velocity of species l , lm  is the mass 

fraction of component l , defined as ρρ ll =m , lρ  is the mass density of species l  (mass of l  over total mixture 
volume), ρ  is the bulk density of the mixture ( ∑=

l
lρρ ), p  is the pressure, µ  is the fluid mixture viscosity, g  is the 

gravity acceleration vector, pc  is the specific heat, T  is the temperature and λ  is the fluid thermal conductivity. The 

generation rate of species l  per unit of mixture mass is given in (4) by 
lR . 

An alternative way of writing the mass transport equation is using the volumetric molar concentration lC  (mol of l  

over total mixture volume), the molar weight lM  (g/mol of l ) and the molar generation/destruction rate ∗
lR  (mol of l  

/total mixture volume), giving: 
 

∗+⋅∇ lllll RMCM  = ) ( Ju                         (5) 
 
Further, the mass diffusion flux lJ  (mass of l  per unit area per unit time) in (4) or (5) is due to the velocity slip of 

species l , 
 

llllllll CDMmD ∇−=∇−=−= ρρ )( uuJ         (6) 
 

where lD  is the diffusion coefficient of species l  into the mixture. The second equality in Eq. (6) is known as Fick’s 
Law, which is a constitutive equation strictly valid for binary mixtures under the absence of any additional driving 
mechanisms for mass transfer (Hsu and Cheng, 1990). Therefore, no Soret or Dufour effects are here considered. 

Rearranging (5) for an inert species, dividing it by lM  and dropping the index l  for a simple binary mixture, one 
has, 

  
)( = ) ( CDC ∇⋅∇⋅∇ u           (7) 

 
If one considers that the density in the last term of (2) varies with temperature and concentration, for natural 

convection flow, the Boussinesq hypothesis reads, after renaming this density ρT, 
 

)]()(1[ refCrefT CCTT −−−−≅ ββρρ          (8) 
 

where the subscript ref indicates a reference value and β  and Cβ  are the thermal and salute expansion coefficients, 
respectively, defined by, 

 

CpT ,

1
∂
∂

−=
ρ

ρ
β , 

Tp
C C ,

1
∂
∂

−=
ρ

ρ
β          (9) 

 
Equation (8) is an approximation of (9) and shows how density varies with temperature and concentration in the 

body force term of the momentum equation. 
Further, substituting (8) into (2), one has, 
 

)]()(1[)( 2
refref CCTTp −−−−+∇+∇−=⋅∇ ββρµρ guuu       (10) 

 
 Thus, the momentum equation becomes, 
 

])()([()()( 2*
refCref CCTTp −+−−∇+∇−=⋅∇ ββρµρ guuu       (11) 

 
where gρ−∇=∇ pp *)(  is a modified pressure gradient. 

As mentioned, there are, in principle, two ways that one can follow in order to treat turbulent flow in porous media. 
The first method applies a time average operator to the governing Eq. (4) before the volume average procedure is 
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conducted. In the second approach, the order of application of the two average operators is reversed. Both techniques 
aim at derivation of a suitable macroscopic turbulent mass transport equation. 

Volume averaging in a porous medium, described in detail in references (Gray and Lee, 1997) and (Whitaker, 
1969), makes use of the concept of a Representative Elementary Volume (REV), over which local equations are 
integrated. After integration, detailed information within the volume is lost and, instead, overall properties referring to a 
REV are considered. In a similar manner, statistical analysis of turbulent flow leads to time mean properties. Transport 
equations for statistical values are considered in lieu of instantaneous information on the flow. 

Before undertaking the task of developing macroscopic equations, it is convenient to recall the definition of time 
average and volume average. 
  
2.1. Volume Average Operator 
 

The volume average of ϕ  taken over a Representative Elementary Volume in a porous medium can be written as: 
 

∫
∆∆

=〉〈
V

v dV
V

ϕϕ 1             (12) 

 
The value vϕ  is defined for any point x surrounded by a Representative Elementary Volume, of size V∆ . This 

average is related to the intrinsic average for the fluid phase as: 
 

i
f

v
f 〉〈=〉〈 ϕφϕ            (13) 

 
where VV f ∆∆=φ  is the medium porosity and fV∆  is the volume occupied by the fluid in a REV. Furthermore, one 
can write: 

 
ϕϕϕ ii +〉〈=             (14) 

 
with 0=〉〈 iiϕ . In Eq. (14), ϕi  is the spatial deviation of ϕ  with respect to the intrinsic average iϕ . 

Further, the local volume average theorem can be expressed as (Gray and Lee, 1997) and (Whitaker, 1969): 
 

∫
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where n  is the unit vector normal to the fluid-solid interface and iA  is the fluid-solid interface area within the REV. It 
is important to emphasize that Ai should not be confused with the surface area surrounding volume V∆ . 
  
2.2. Macroscopic Equations for Buoyancy Free Flows 
 

Momentum transport 
 

⎥
⎦

⎤
⎢
⎣

⎡
+−∇+〉〈∇−=⎟⎟

⎠

⎞
⎜⎜
⎝
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K
c

K
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Heat transport 
 

}{)()( i
eff

i
Dfp TTc 〉∇〈⋅⋅∇=〉〈⋅∇ Kuρ         (17) 

 
disptorsfeff KKIK ++−+= ])1([ λφλφ         (18) 
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The subscripts f and s refer to fluid and solid phases, respectively, and coefficients K’s come from the modeling of 
the following mechanisms: 

 

• Tortuosity: ( ) i
tor

iA
ssff TdSTT

V
〉∇〈⋅=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

∆ ∫ Kn λλ1       (19) 

 
• Thermal dispersion: i

disp
i

f
ii

fp TTc 〉∇〈⋅=〉〈− Kuφρ )(       (20) 
 

Mass transport 
 

)(  = )( i
eff

i
D CC 〉〈∇⋅⋅∇〉〈⋅∇ φDu          (21) 

 
diffdispeff DDD +=            (22) 

 

IID
Sc

D i
diff

φµ
ρ
1
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The coefficients dispD  in (21) appear due to the nonlinearity of the convection term. They come from the modeling 

of the following mechanisms: 
 

• Mass dispersion: i
disp

iii CC 〉∇〈⋅=〉−〈 Du        (24) 
 

where here we do not account for the thermal and mass dispersion effects, taking in to account only the diffusive and 
convective ones. Thus, torK , dispK   and dispD  are null. 
 
2.3. Macroscopic Double-Diffusion Effects 

 
Mean Flow 
 
Focusing now attention to buoyancy effects only, application of the volume average procedure to the last term of 

(11) leads to, 
 

∫
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Expanding the left hand side of (25) in light of (14), the buoyancy term becomes, 
 

44 344 214434421
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where the third and forth terms on the r.h.s. are null since 0=〉〈 iiϕ . Here, coefficients φβ  and 

φ
βC  are the 

macroscopic thermal and salute expansion coefficients, respectively. Assuming that gravity is constant over the REV, 
expressions for them based on (26) are given as, 
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Including (26) into (16), the macroscopic time-mean Navier-Stokes (NS) equation for an incompressible fluid with 

constant properties is given as, 
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3. Results and Conclusions 
 

The presents work refers to the study of natural convective flows in a porous cavity (height H , width L : aspect 
ratio LHA = ), saturated by a binary fluid ( such as aqueous solutions, as in numerous experimental studies related to 
solidification processes). Horizontal temperature and concentration differences are specified between the vertical walls 
( 1T  and 1C  on the left wall, 2T  and 2C  on the right surface), and zero mass and heat fluxes are imposed at the 
horizontal wall. Figure 1 shows different combinations of temperature and mass concentration gradients. All boundaries 
are considered to be impermeable. The binary fluid is assumed to be Newtonian and to satisfy the Boussinesq 
approximation; the flow is incompressible, laminar, 2D and in the steady state. 

In this work, equations were derived for laminar double-diffusive natural convection in porous media. Derivations 
were carried out under the light of the double decomposition concept [0-0]. Extra terms appearing in the equations 
needed to be modeled in terms of Du , T  and 〉〈C .  

Figures 2 to 4 shows temperature and mass concentration fields for different values of N , with gradients in 
different relative positions, using 100* =Ra , 100=Le  and 310−=Da . We can observe that with an increase in N  the 
structure of the flow changes significantly. For low values of N , the entire cavity is affected by the driven flow and the  
boundary layer regime gradually appears with the increase of N . These changes on the flow pattern have a direct 
consequence on the concentration fields. 

Table 1 presents the values of calculated average Nusselt and Sherwood numbers compared with those obtained by 
Trevisan and Bejan [0] and  B. Goyeau [0]. As it can be seen, good agreement was obtained when the present values 
were compared with literature results. Tables 2, 3 e 4 present values of average Nusselt and Sherwood, for N=0.1, 1 and 
10, respectively, with Le=10 and A=1. We can observe that changes on N do not affect much integral parameters of the 
flow, at lease for the conditions here simulated. 

On the overall, we can conclude that results herein agree qualitatively well with published data in the literature. 
 
 
 

a) 

 

 
b) 

 

 
c) 

Figure 1– Problem Geometry:  a) 1,1 −=∇−=∇ CT ; b) 0,1 =∇−=∇ CT ; c) 1,1 +=∇−=∇ CT . 
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Figure 2: Isotherms, isoconcentration and streamlines lines ( 1.0=N ; 100* =Ra ; 100=Le ; 1=A , 310−=Da ): a) 
1,1 −=∇−=∇ CT ; b) 0,1 =∇−=∇ CT ; c) 1,1 +=∇−=∇ CT . 
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Figure 3– Isotherms, isoconcentration and streamlines lines ( 1=N ; 100* =Ra ; 100=Le ; 1=A , 310−=Da ): a) 
1,1 −=∇−=∇ CT ; b) 0,1 =∇−=∇ CT ; c) 1,1 +=∇−=∇ CT . 
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Figure 4– Isotherms, isoconcentration and streamlines lines ( 10=N ; 100* =Ra ; 100=Le ; 1=A , 310−=Da ): a) 
1,1 −=∇−=∇ CT ; b) 0,1 =∇−=∇ CT ; c) 1,1 +=∇−=∇ CT . 

 
 

 
Table 1: Average Nusselt and Sherwood numbers ( N=0 only thermal drive, Le=10, A=1). 

*Ra  Gradients Types  100 200 400 1.000 2.000 
Present Results 3.11 4.90 7.65 13.22 19.54 
 Goyeau et al  

[0] 3.11 4.96 7.77 13.47 19.90 Nu  
Trevisan and 

Bejan [0] 3.27 5.61 9.69 - - 

Present Results 14.76 22.02 32.55 53.37 76.58 
Goyeau et al [0] 13.25 19.86 28.41 48.32 69.29 Sh 

1,1 −=∇−=∇ CT  

Trevisan and 
Bejan [0] 15.61 23.23 30.76 - - 

Nu  0,1 =∇−=∇ CT  Present Results 3.11 4.82 7.65 13.25 19.51 
Nu  3.11 4.81 7.64 13.99 19.48 
Sh 

1,1 +=∇−=∇ CT  Present Results 
14.76 22.64 32.50 53.34 76.09 
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Table 2: Average Nusselt and Sherwood numbers (N=0.1, Le=10, A=1). 
*Ra  Gradients Types 100 200 400 1.000 2.000 

Nu  3.05 4.84 7.61 13.25 19.53 
Sh 

1,1 −=∇−=∇ CT  
14.88 22.19 31.82 52.80 75.91 

Nu  0,1 =∇−=∇ CT  3.05 4.84 7.68 13.25 19.56 
Nu  3.05 4.84 7.58 13.25 19.37 
Sh 

1,1 +=∇−=∇ CT  
14.88 22.19 32.01 52.80 75.59 

 
 

Table 3: Average Nusselt and Sherwood numbers (N=1, Le=10, A=1). 
*Ra  Gradients Types 100 200 400 1.000 2.000 

     Nu  3.05 4.85 7.61 13.25 19.53 
Sh 

1,1 −=∇−=∇ CT  
14.88 22.19 31.82 52.08 75.91 

Nu  0,1 =∇−=∇ CT  3.05 4.84 7.65 13.25 19.56 
Nu  3.05 4.85 7.58 13.92 19.53 
Sh 

1,1 +=∇−=∇ CT  
14.88 22.19 31.82 52.08 75.91 

 
 

Table 4: Average Nusselt and Sherwood numbers (N=10, Le=10, A=1). 
*Ra  Gradients Types 100 200 400 1.000 2.000 

     Nu  3.08 4.85 7.65 13.25 19.53 
Sh 

1,1 −=∇−=∇ CT  
14.87 22.19 32.28 53.45 75.91 

Nu  0,1 =∇−=∇ CT  3.05 4.84 7.65 13.19 19.50 
Nu  3.08 4.85 7.65 13.25 19.53 
Sh 

1,1 +=∇−=∇ CT  
14.87 22.19 32.25 53.45 75.91 
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